Why did early computer designers eschew integers? The Next CEO of Stack OverflowWhat register size did early computers use?What other computers used this floating-point format?Why did so many early microcomputers use the MOS 6502 and variants?Why did keygens play music?Why were early computers named “Mark”?Why did expert systems fall?Why were early personal computer monitors not green?When did “Zen” in computer programming become a thing?History of advanced hardwareWere there any working computers using residue number systems?

What happened in Rome, when the western empire "fell"?

How did Beeri the Hittite come up with naming his daughter Yehudit?

Can you teleport closer to a creature you are Frightened of?

Does Germany produce more waste than the US?

free fall ellipse or parabola?

Point distance program written without a framework

Could a dragon use its wings to swim?

Is it OK to decorate a log book cover?

Calculate the Mean mean of two numbers

Are the names of these months realistic?

Is there an equivalent of cd - for cp or mv

How to find image of a complex function with given constraints?

Physiological effects of huge anime eyes

Help! I cannot understand this game’s notations!

Players Circumventing the limitations of Wish

Getting Stale Gas Out of a Gas Tank w/out Dropping the Tank

Lucky Feat: How can "more than one creature spend a luck point to influence the outcome of a roll"?

What was Carter Burke's job for "the company" in Aliens?

Is a distribution that is normal, but highly skewed, considered Gaussian?

Film where the government was corrupt with aliens, people sent to kill aliens are given rigged visors not showing the right aliens

Is it okay to majorly distort historical facts while writing a fiction story?

Why did early computer designers eschew integers?

Aggressive Under-Indexing and no data for missing index

Can Sneak Attack be used when hitting with an improvised weapon?



Why did early computer designers eschew integers?



The Next CEO of Stack OverflowWhat register size did early computers use?What other computers used this floating-point format?Why did so many early microcomputers use the MOS 6502 and variants?Why did keygens play music?Why were early computers named “Mark”?Why did expert systems fall?Why were early personal computer monitors not green?When did “Zen” in computer programming become a thing?History of advanced hardwareWere there any working computers using residue number systems?










4















Several early computer designs regarded a 'word' as representing not an integer, with the bits having values 2^0, 2^1, 2^2, ..., but as representing a fixed-point fraction 2^-1, 2^-2, 2^-3, ...



(For the sake of simplicity in this question I'm ignoring the existence of the sign bit and talk only in terms of positive numbers)



Some examples of this convention are EDVAC, EDSAC, and the IAS machine.



Why was this? To me, having dealt with since the 1970s with machines that have "integers" at base, this seems a strange way to look at it.



Does it affect the machine operation in any way? Addition and subtraction are the same regardless of what you think the bits mean, but I suppose that for multiplication of two N-bit words giving an N-bit result, the choice of which N bits to keep depends on your interpretation. (Integer: you want the "right hand word"; fixed-point fraction, you want the "left hand word").










share|improve this question

















  • 1





    Very early on, it was likely that computers were not considered to be general purpose machines. So if the main task for which a computer was designed involved doing calculations with flractional numbers, prioritizing them over integers would make sense. It seems likely that computers designed for business programs would be more tuned to integers, because money (in the USA) can be treated as pennies, and very little would need to be fractional.

    – RichF
    1 hour ago
















4















Several early computer designs regarded a 'word' as representing not an integer, with the bits having values 2^0, 2^1, 2^2, ..., but as representing a fixed-point fraction 2^-1, 2^-2, 2^-3, ...



(For the sake of simplicity in this question I'm ignoring the existence of the sign bit and talk only in terms of positive numbers)



Some examples of this convention are EDVAC, EDSAC, and the IAS machine.



Why was this? To me, having dealt with since the 1970s with machines that have "integers" at base, this seems a strange way to look at it.



Does it affect the machine operation in any way? Addition and subtraction are the same regardless of what you think the bits mean, but I suppose that for multiplication of two N-bit words giving an N-bit result, the choice of which N bits to keep depends on your interpretation. (Integer: you want the "right hand word"; fixed-point fraction, you want the "left hand word").










share|improve this question

















  • 1





    Very early on, it was likely that computers were not considered to be general purpose machines. So if the main task for which a computer was designed involved doing calculations with flractional numbers, prioritizing them over integers would make sense. It seems likely that computers designed for business programs would be more tuned to integers, because money (in the USA) can be treated as pennies, and very little would need to be fractional.

    – RichF
    1 hour ago














4












4








4








Several early computer designs regarded a 'word' as representing not an integer, with the bits having values 2^0, 2^1, 2^2, ..., but as representing a fixed-point fraction 2^-1, 2^-2, 2^-3, ...



(For the sake of simplicity in this question I'm ignoring the existence of the sign bit and talk only in terms of positive numbers)



Some examples of this convention are EDVAC, EDSAC, and the IAS machine.



Why was this? To me, having dealt with since the 1970s with machines that have "integers" at base, this seems a strange way to look at it.



Does it affect the machine operation in any way? Addition and subtraction are the same regardless of what you think the bits mean, but I suppose that for multiplication of two N-bit words giving an N-bit result, the choice of which N bits to keep depends on your interpretation. (Integer: you want the "right hand word"; fixed-point fraction, you want the "left hand word").










share|improve this question














Several early computer designs regarded a 'word' as representing not an integer, with the bits having values 2^0, 2^1, 2^2, ..., but as representing a fixed-point fraction 2^-1, 2^-2, 2^-3, ...



(For the sake of simplicity in this question I'm ignoring the existence of the sign bit and talk only in terms of positive numbers)



Some examples of this convention are EDVAC, EDSAC, and the IAS machine.



Why was this? To me, having dealt with since the 1970s with machines that have "integers" at base, this seems a strange way to look at it.



Does it affect the machine operation in any way? Addition and subtraction are the same regardless of what you think the bits mean, but I suppose that for multiplication of two N-bit words giving an N-bit result, the choice of which N bits to keep depends on your interpretation. (Integer: you want the "right hand word"; fixed-point fraction, you want the "left hand word").







history






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 2 hours ago









another-daveanother-dave

1,172112




1,172112







  • 1





    Very early on, it was likely that computers were not considered to be general purpose machines. So if the main task for which a computer was designed involved doing calculations with flractional numbers, prioritizing them over integers would make sense. It seems likely that computers designed for business programs would be more tuned to integers, because money (in the USA) can be treated as pennies, and very little would need to be fractional.

    – RichF
    1 hour ago













  • 1





    Very early on, it was likely that computers were not considered to be general purpose machines. So if the main task for which a computer was designed involved doing calculations with flractional numbers, prioritizing them over integers would make sense. It seems likely that computers designed for business programs would be more tuned to integers, because money (in the USA) can be treated as pennies, and very little would need to be fractional.

    – RichF
    1 hour ago








1




1





Very early on, it was likely that computers were not considered to be general purpose machines. So if the main task for which a computer was designed involved doing calculations with flractional numbers, prioritizing them over integers would make sense. It seems likely that computers designed for business programs would be more tuned to integers, because money (in the USA) can be treated as pennies, and very little would need to be fractional.

– RichF
1 hour ago






Very early on, it was likely that computers were not considered to be general purpose machines. So if the main task for which a computer was designed involved doing calculations with flractional numbers, prioritizing them over integers would make sense. It seems likely that computers designed for business programs would be more tuned to integers, because money (in the USA) can be treated as pennies, and very little would need to be fractional.

– RichF
1 hour ago











1 Answer
1






active

oldest

votes


















4














I'd think that it was mostly down to the preferences of John von Neumann at the time. He was a strong advocate of fixed point representations, and early computers were designed with long words to accommodate a large range of numbers that way. You certainly don't need 30-40 bits to cover the most useful integers, but that many were needed if you wanted plenty of digits before and after the decimal point.



By the 1970s though, the costs of integration were such that much smaller word sizes made sense. Minicomputers were commonly 16 bit architectures, and micros 8 bits or sometimes even 4. At that point you needed all the integers you can get, plus floating point had largely replaced fixed point for when you needed decimals.



Nowadays we'd think nothing of using 64 bit integers, of course, but it's a heck of a lot easier to integrate the number of logic gates required for that than it would have been back when they all had to be made out of fragile and expensive vacuum tubes.






share|improve this answer








New contributor




Matthew Barber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "648"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fretrocomputing.stackexchange.com%2fquestions%2f9500%2fwhy-did-early-computer-designers-eschew-integers%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4














    I'd think that it was mostly down to the preferences of John von Neumann at the time. He was a strong advocate of fixed point representations, and early computers were designed with long words to accommodate a large range of numbers that way. You certainly don't need 30-40 bits to cover the most useful integers, but that many were needed if you wanted plenty of digits before and after the decimal point.



    By the 1970s though, the costs of integration were such that much smaller word sizes made sense. Minicomputers were commonly 16 bit architectures, and micros 8 bits or sometimes even 4. At that point you needed all the integers you can get, plus floating point had largely replaced fixed point for when you needed decimals.



    Nowadays we'd think nothing of using 64 bit integers, of course, but it's a heck of a lot easier to integrate the number of logic gates required for that than it would have been back when they all had to be made out of fragile and expensive vacuum tubes.






    share|improve this answer








    New contributor




    Matthew Barber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.
























      4














      I'd think that it was mostly down to the preferences of John von Neumann at the time. He was a strong advocate of fixed point representations, and early computers were designed with long words to accommodate a large range of numbers that way. You certainly don't need 30-40 bits to cover the most useful integers, but that many were needed if you wanted plenty of digits before and after the decimal point.



      By the 1970s though, the costs of integration were such that much smaller word sizes made sense. Minicomputers were commonly 16 bit architectures, and micros 8 bits or sometimes even 4. At that point you needed all the integers you can get, plus floating point had largely replaced fixed point for when you needed decimals.



      Nowadays we'd think nothing of using 64 bit integers, of course, but it's a heck of a lot easier to integrate the number of logic gates required for that than it would have been back when they all had to be made out of fragile and expensive vacuum tubes.






      share|improve this answer








      New contributor




      Matthew Barber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















        4












        4








        4







        I'd think that it was mostly down to the preferences of John von Neumann at the time. He was a strong advocate of fixed point representations, and early computers were designed with long words to accommodate a large range of numbers that way. You certainly don't need 30-40 bits to cover the most useful integers, but that many were needed if you wanted plenty of digits before and after the decimal point.



        By the 1970s though, the costs of integration were such that much smaller word sizes made sense. Minicomputers were commonly 16 bit architectures, and micros 8 bits or sometimes even 4. At that point you needed all the integers you can get, plus floating point had largely replaced fixed point for when you needed decimals.



        Nowadays we'd think nothing of using 64 bit integers, of course, but it's a heck of a lot easier to integrate the number of logic gates required for that than it would have been back when they all had to be made out of fragile and expensive vacuum tubes.






        share|improve this answer








        New contributor




        Matthew Barber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.










        I'd think that it was mostly down to the preferences of John von Neumann at the time. He was a strong advocate of fixed point representations, and early computers were designed with long words to accommodate a large range of numbers that way. You certainly don't need 30-40 bits to cover the most useful integers, but that many were needed if you wanted plenty of digits before and after the decimal point.



        By the 1970s though, the costs of integration were such that much smaller word sizes made sense. Minicomputers were commonly 16 bit architectures, and micros 8 bits or sometimes even 4. At that point you needed all the integers you can get, plus floating point had largely replaced fixed point for when you needed decimals.



        Nowadays we'd think nothing of using 64 bit integers, of course, but it's a heck of a lot easier to integrate the number of logic gates required for that than it would have been back when they all had to be made out of fragile and expensive vacuum tubes.







        share|improve this answer








        New contributor




        Matthew Barber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        share|improve this answer



        share|improve this answer






        New contributor




        Matthew Barber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        answered 1 hour ago









        Matthew BarberMatthew Barber

        1411




        1411




        New contributor




        Matthew Barber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.





        New contributor





        Matthew Barber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        Matthew Barber is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Retrocomputing Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fretrocomputing.stackexchange.com%2fquestions%2f9500%2fwhy-did-early-computer-designers-eschew-integers%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Isabella Eugénie Boyer Biographie | Références | Menu de navigationmodifiermodifier le codeComparator to Compute the Relative Value of a U.S. Dollar Amount – 1774 to Present.

            Lioubotyn Sommaire Géographie | Histoire | Population | Notes et références | Liens externes | Menu de navigationlubotin.kharkov.uamodifier« Recensements et estimations de la population depuis 1897 »« Office des statistiques d'Ukraine : population au 1er janvier 2010, 2011 et 2012 »« Office des statistiques d'Ukraine : population au 1er janvier 2011, 2012 et 2013 »Informations officiellesCartes topographiquesCarte routièrem

            Mpande kaSenzangakhona Biographie | Références | Menu de navigationmodifierMpande kaSenzangakhonavoir la liste des auteursm