How to calculate the two limits? The Next CEO of Stack OverflowCompute $lim limits_xtoinfty (fracx-2x+2)^x$limits of the sequence $n/(n+1)$How to calculate $lim_xto1left(frac1+cos(pi x)tan^2(pi x)right)^!x^2$Calculate the limit of integralHow to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Is there a way to get at this limit problem algebraically?Calculate $lim_x to infty(x+1)e^-2x$How to calculate $lim_nto infty fracn^nn!^2$?Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$

Can Sneak Attack be used when hitting with an improvised weapon?

Strange use of "whether ... than ..." in official text

What steps are necessary to read a Modern SSD in Medieval Europe?

What is the difference between "hamstring tendon" and "common hamstring tendon"?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

It is correct to match light sources with the same color temperature?

What's the commands of Cisco query bgp neighbor table, bgp table and router table?

Is there an equivalent of cd - for cp or mv

Is it convenient to ask the journal's editor for two additional days to complete a review?

Is French Guiana a (hard) EU border?

Won the lottery - how do I keep the money?

Physiological effects of huge anime eyes

Are the names of these months realistic?

Do scriptures give a method to recognize a truly self-realized person/jivanmukta?

Audio Conversion With ADS1243

Is it correct to say moon starry nights?

How to calculate the two limits?

Point distance program written without a framework

Lucky Feat: How can "more than one creature spend a luck point to influence the outcome of a roll"?

Computationally populating tables with probability data

Why am I getting "Static method cannot be referenced from a non static context: String String.valueOf(Object)"?

How do you define an element with an ID attribute using LWC?

how one can write a nice vector parser, something that does pgfvecparseA=B-C; D=E x F;

Does higher Oxidation/ reduction potential translate to higher energy storage in battery?



How to calculate the two limits?



The Next CEO of Stack OverflowCompute $lim limits_xtoinfty (fracx-2x+2)^x$limits of the sequence $n/(n+1)$How to calculate $lim_xto1left(frac1+cos(pi x)tan^2(pi x)right)^!x^2$Calculate the limit of integralHow to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Is there a way to get at this limit problem algebraically?Calculate $lim_x to infty(x+1)e^-2x$How to calculate $lim_nto infty fracn^nn!^2$?Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$










3












$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago















3












$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago













3












3








3





$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$





I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago







lanse7pty

















asked 2 hours ago









lanse7ptylanse7pty

1,8411823




1,8411823











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago
















  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago















$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago




$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$

    Without L'Hospital
    $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



    Now, by Taylor for large values of $x$
    $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
    $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
    $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
    $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        You can solve the first one using



        • $arctan x + operatornamearccotx = fracpi2$

        • $lim_yto 0(1-y)^1/y = e^-1$

        • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

        begineqnarray* left(frac2pi arctan x right)^x
        & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
        & stackrelx to +inftylongrightarrow & e^-frac2pi
        endeqnarray*



        The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




        • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





        share|cite









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






          share|cite|improve this answer











          $endgroup$

















            2












            $begingroup$

            Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






            share|cite|improve this answer











            $endgroup$















              2












              2








              2





              $begingroup$

              Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






              share|cite|improve this answer











              $endgroup$



              Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 1 hour ago

























              answered 2 hours ago









              Paras KhoslaParas Khosla

              2,736423




              2,736423





















                  1












                  $begingroup$

                  Without L'Hospital
                  $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                  Now, by Taylor for large values of $x$
                  $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                  $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                  $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                  $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                  share|cite|improve this answer









                  $endgroup$

















                    1












                    $begingroup$

                    Without L'Hospital
                    $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                    Now, by Taylor for large values of $x$
                    $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                    $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                    $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                    $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                    share|cite|improve this answer









                    $endgroup$















                      1












                      1








                      1





                      $begingroup$

                      Without L'Hospital
                      $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                      Now, by Taylor for large values of $x$
                      $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                      $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                      $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                      $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                      share|cite|improve this answer









                      $endgroup$



                      Without L'Hospital
                      $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                      Now, by Taylor for large values of $x$
                      $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                      $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                      $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                      $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 1 hour ago









                      Claude LeiboviciClaude Leibovici

                      125k1158136




                      125k1158136





















                          0












                          $begingroup$

                          I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






                          share|cite|improve this answer









                          $endgroup$

















                            0












                            $begingroup$

                            I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






                            share|cite|improve this answer









                            $endgroup$















                              0












                              0








                              0





                              $begingroup$

                              I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






                              share|cite|improve this answer









                              $endgroup$



                              I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 2 hours ago









                              AdmuthAdmuth

                              185




                              185





















                                  0












                                  $begingroup$

                                  You can solve the first one using



                                  • $arctan x + operatornamearccotx = fracpi2$

                                  • $lim_yto 0(1-y)^1/y = e^-1$

                                  • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

                                  begineqnarray* left(frac2pi arctan x right)^x
                                  & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
                                  & stackrelx to +inftylongrightarrow & e^-frac2pi
                                  endeqnarray*



                                  The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




                                  • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





                                  share|cite









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    You can solve the first one using



                                    • $arctan x + operatornamearccotx = fracpi2$

                                    • $lim_yto 0(1-y)^1/y = e^-1$

                                    • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

                                    begineqnarray* left(frac2pi arctan x right)^x
                                    & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
                                    & stackrelx to +inftylongrightarrow & e^-frac2pi
                                    endeqnarray*



                                    The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




                                    • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





                                    share|cite









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      You can solve the first one using



                                      • $arctan x + operatornamearccotx = fracpi2$

                                      • $lim_yto 0(1-y)^1/y = e^-1$

                                      • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

                                      begineqnarray* left(frac2pi arctan x right)^x
                                      & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
                                      & stackrelx to +inftylongrightarrow & e^-frac2pi
                                      endeqnarray*



                                      The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




                                      • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.





                                      share|cite









                                      $endgroup$



                                      You can solve the first one using



                                      • $arctan x + operatornamearccotx = fracpi2$

                                      • $lim_yto 0(1-y)^1/y = e^-1$

                                      • $xoperatornamearccotx stackrelstackrelx =cot uuto 0^+= cot ucdot u = cos ucdot fracusin u stackrelu to 0^+longrightarrow 1$

                                      begineqnarray* left(frac2pi arctan x right)^x
                                      & stackrelarctan x = fracpi2-operatornamearccotx= & left( underbraceleft(1- frac2pioperatornamearccotxright)^fracpi2operatornamearccotx_stackrelx to +inftylongrightarrow e^-1 right)^frac2piunderbracexoperatornamearccotx_stackrelx to +inftylongrightarrow 1 \
                                      & stackrelx to +inftylongrightarrow & e^-frac2pi
                                      endeqnarray*



                                      The second limit is quite straight forward as $lim_xto 3+cos x = cos 3$. Just consider




                                      • $fracln(x-3)ln(e^x-e^3)$ and apply L'Hospital.






                                      share|cite












                                      share|cite



                                      share|cite










                                      answered 5 mins ago









                                      trancelocationtrancelocation

                                      13.4k1827




                                      13.4k1827



























                                          draft saved

                                          draft discarded
















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid


                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.

                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');

                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Isabella Eugénie Boyer Biographie | Références | Menu de navigationmodifiermodifier le codeComparator to Compute the Relative Value of a U.S. Dollar Amount – 1774 to Present.

                                          Mpande kaSenzangakhona Biographie | Références | Menu de navigationmodifierMpande kaSenzangakhonavoir la liste des auteursm

                                          Hornos de Moncalvillo Voir aussi | Menu de navigationmodifierm