what is the log of the PDF for a Normal Distribution? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution

What initially awakened the Balrog?

Moving a wrapfig vertically to encroach partially on a subsection title

Google .dev domain strangely redirects to https

Special flights

Universal covering space of the real projective line?

What is the "studentd" process?

Nose gear failure in single prop aircraft: belly landing or nose-gear up landing?

what is the log of the PDF for a Normal Distribution?

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

What is the origin of 落第?

Does silver oxide react with hydrogen sulfide?

Why complex landing gears are used instead of simple,reliability and light weight muscle wire or shape memory alloys?

What would you call this weird metallic apparatus that allows you to lift people?

How to write capital alpha?

Flight departed from the gate 5 min before scheduled departure time. Refund options

License to disallow distribution in closed source software, but allow exceptions made by owner?

Why is a lens darker than other ones when applying the same settings?

How does the math work when buying airline miles?

How to force a browser when connecting to a specific domain to be https only using only the client machine?

Why is it faster to reheat something than it is to cook it?

What does it mean that physics no longer uses mechanical models to describe phenomena?

Is there public access to the Meteor Crater in Arizona?

New Order #6: Easter Egg

retrieve food groups from food item list



what is the log of the PDF for a Normal Distribution?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago

















1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago













1












1








1





$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$




I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?







probability log






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









shi95shi95

83




83







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago












  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago







3




3




$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago





$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago













$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago




$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

For a single observed value $x$ you have log-likelihood:



$$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



$$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For a single observed value $x$ you have log-likelihood:



    $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



    For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



    $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      For a single observed value $x$ you have log-likelihood:



      $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



      For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



      $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



        For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



        $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






        share|cite|improve this answer









        $endgroup$



        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



        For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



        $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        BenBen

        28.9k233129




        28.9k233129



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Isabella Eugénie Boyer Biographie | Références | Menu de navigationmodifiermodifier le codeComparator to Compute the Relative Value of a U.S. Dollar Amount – 1774 to Present.

            Mpande kaSenzangakhona Biographie | Références | Menu de navigationmodifierMpande kaSenzangakhonavoir la liste des auteursm

            Hornos de Moncalvillo Voir aussi | Menu de navigationmodifierm