Is infinity mathematically observable?Does Pi contain all possible number combinations?What did Gauss think about infinity?Cantor, longish lines and the Landau -o notationsAre there mathematical objects that have been proved to exist but cannot be described in words?Concept of infinity: Infinity - InfinityInfinity minus infinity?Seemingly Simple Finding Constraints on Values in Difference of Geometric MeansFinding the two planes that contain a given line and form the same angle with two other linesmathematization of infinityIs there any integer-infinity?Intuition for Integration and Starting Points

Can the harmonic series explain the origin of the major scale?

Organic chemistry Iodoform Reaction

How to deal with or prevent idle in the test team?

Adding empty element to declared container without declaring type of element

Why isn't KTEX's runway designation 10/28 instead of 9/27?

Greatest common substring

What do you call the infoboxes with text and sometimes images on the side of a page we find in textbooks?

Did US corporations pay demonstrators in the German demonstrations against article 13?

How to be able to process a large JSON response?

Identify a stage play about a VR experience in which participants are encouraged to simulate performing horrific activities

How can I successfully establish a nationwide combat training program for a large country?

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

Latex for-and in equation

Meta programming: Declare a new struct on the fly

A Standard Integral Equation

Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?

Indicating multiple different modes of speech (fantasy language or telepathy)

What is Sitecore Managed Cloud?

I2C signal and power over long range (10meter cable)

Is infinity mathematically observable?

Who must act to prevent Brexit on March 29th?

Freedom of speech and where it applies

Teaching indefinite integrals that require special-casing

Invariance of results when scaling explanatory variables in logistic regression, is there a proof?



Is infinity mathematically observable?


Does Pi contain all possible number combinations?What did Gauss think about infinity?Cantor, longish lines and the Landau -o notationsAre there mathematical objects that have been proved to exist but cannot be described in words?Concept of infinity: Infinity - InfinityInfinity minus infinity?Seemingly Simple Finding Constraints on Values in Difference of Geometric MeansFinding the two planes that contain a given line and form the same angle with two other linesmathematization of infinityIs there any integer-infinity?Intuition for Integration and Starting Points













3












$begingroup$


I have a little question. In fact, is too short.




Is infinity observable? (Can infinity be observed?)




I would like to explain it by example because the question seems unclear in this way.



A simple example:




$sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




By mathematical definition,



Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




Or other combinations can be equal,



$$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



Here, $sqrt 2$ is an only simple example. The question is not just
$sqrt 2$.




Generalization of the question is :



For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



Sorry about the grammar and translation errors in my English.



Thank you very much.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    I have a little question. In fact, is too short.




    Is infinity observable? (Can infinity be observed?)




    I would like to explain it by example because the question seems unclear in this way.



    A simple example:




    $sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



    Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




    By mathematical definition,



    Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




    Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




    Or other combinations can be equal,



    $$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



    Here, $sqrt 2$ is an only simple example. The question is not just
    $sqrt 2$.




    Generalization of the question is :



    For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




    I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



    Sorry about the grammar and translation errors in my English.



    Thank you very much.










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I have a little question. In fact, is too short.




      Is infinity observable? (Can infinity be observed?)




      I would like to explain it by example because the question seems unclear in this way.



      A simple example:




      $sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



      Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




      By mathematical definition,



      Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




      Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




      Or other combinations can be equal,



      $$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



      Here, $sqrt 2$ is an only simple example. The question is not just
      $sqrt 2$.




      Generalization of the question is :



      For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




      I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



      Sorry about the grammar and translation errors in my English.



      Thank you very much.










      share|cite|improve this question











      $endgroup$




      I have a little question. In fact, is too short.




      Is infinity observable? (Can infinity be observed?)




      I would like to explain it by example because the question seems unclear in this way.



      A simple example:




      $sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



      Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




      By mathematical definition,



      Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




      Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




      Or other combinations can be equal,



      $$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



      Here, $sqrt 2$ is an only simple example. The question is not just
      $sqrt 2$.




      Generalization of the question is :



      For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




      I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



      Sorry about the grammar and translation errors in my English.



      Thank you very much.







      algebra-precalculus soft-question math-history infinity irrational-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 1 hour ago







      Student

















      asked 1 hour ago









      StudentStudent

      6491418




      6491418




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago


















          4












          $begingroup$

          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            52 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            52 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            46 mins ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162396%2fis-infinity-mathematically-observable%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago















          5












          $begingroup$

          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago













          5












          5








          5





          $begingroup$

          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






          share|cite|improve this answer











          $endgroup$



          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          SilSil

          5,39521644




          5,39521644











          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago
















          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago















          $begingroup$
          Well, for $e$ is it possible?
          $endgroup$
          – Student
          1 hour ago




          $begingroup$
          Well, for $e$ is it possible?
          $endgroup$
          – Student
          1 hour ago












          $begingroup$
          $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
          $endgroup$
          – Eevee Trainer
          1 hour ago




          $begingroup$
          $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
          $endgroup$
          – Eevee Trainer
          1 hour ago











          4












          $begingroup$

          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            52 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            52 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            46 mins ago















          4












          $begingroup$

          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            52 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            52 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            46 mins ago













          4












          4








          4





          $begingroup$

          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






          share|cite|improve this answer









          $endgroup$



          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          Eevee TrainerEevee Trainer

          8,47721439




          8,47721439











          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            52 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            52 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            46 mins ago
















          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            52 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            52 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            46 mins ago















          $begingroup$
          Is it known a non-normal number?
          $endgroup$
          – Student
          52 mins ago




          $begingroup$
          Is it known a non-normal number?
          $endgroup$
          – Student
          52 mins ago




          1




          1




          $begingroup$
          Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
          $endgroup$
          – Eevee Trainer
          52 mins ago




          $begingroup$
          Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
          $endgroup$
          – Eevee Trainer
          52 mins ago












          $begingroup$
          Thank you :) (+)
          $endgroup$
          – Student
          46 mins ago




          $begingroup$
          Thank you :) (+)
          $endgroup$
          – Student
          46 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162396%2fis-infinity-mathematically-observable%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Isabella Eugénie Boyer Biographie | Références | Menu de navigationmodifiermodifier le codeComparator to Compute the Relative Value of a U.S. Dollar Amount – 1774 to Present.

          Mpande kaSenzangakhona Biographie | Références | Menu de navigationmodifierMpande kaSenzangakhonavoir la liste des auteursm

          Hornos de Moncalvillo Voir aussi | Menu de navigationmodifierm