Showing a sum is positiveFinding Binomial expansion of a radicalSimplify the Expression $sum _ k=0 ^ n binomnki^k3^k-n $Alternative combinatorial proof for $sumlimits_r=0^nbinomnrbinomm+rn=sumlimits_r=0^nbinomnrbinommr2^r$Proof by induction, binomial coefficientApproximating a binomial sum over a simplexHow to expand $sqrtx^6+1$ using Maclaurin's seriesSum of $m choose j$ multiplied by $2^2^j$How to show that $sumlimits_k=0^n (-1)^ktfrac nchoosek x+kchoosek = fracxx+n$Finite sum with inverse binomialShowing an alternating sum is positive

What is the English pronunciation of "pain au chocolat"?

Why is so much work done on numerical verification of the Riemann Hypothesis?

Non-trope happy ending?

How to draw a matrix with arrows in limited space

Microchip documentation does not label CAN buss pins on micro controller pinout diagram

Does the Linux kernel need a file system to run?

Is this part of the description of the Archfey warlock's Misty Escape feature redundant?

Is there a nicer/politer/more positive alternative for "negates"?

Can you use Vicious Mockery to win an argument or gain favours?

What is Cash Advance APR?

Stack Interview Code methods made from class Node and Smart Pointers

15% tax on $7.5k earnings. Is that right?

What does "Scientists rise up against statistical significance" mean? (Comment in Nature)

How to preserve electronics (computers, iPads and phones) for hundreds of years

Which Article Helped Get Rid of Technobabble in RPGs?

Is there a RAID 0 Equivalent for RAM?

Why Shazam when there is already Superman?

A Trivial Diagnosis

Taxes on Dividends in a Roth IRA

Mimic lecturing on blackboard, facing audience

Why do ¬, ∀ and ∃ have the same precedence?

What (the heck) is a Super Worm Equinox Moon?

What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?

Why is it that I can sometimes guess the next note?



Showing a sum is positive


Finding Binomial expansion of a radicalSimplify the Expression $sum _ k=0 ^ n binomnki^k3^k-n $Alternative combinatorial proof for $sumlimits_r=0^nbinomnrbinomm+rn=sumlimits_r=0^nbinomnrbinommr2^r$Proof by induction, binomial coefficientApproximating a binomial sum over a simplexHow to expand $sqrtx^6+1$ using Maclaurin's seriesSum of $m choose j$ multiplied by $2^2^j$How to show that $sumlimits_k=0^n (-1)^ktfrac nchoosek x+kchoosek = fracxx+n$Finite sum with inverse binomialShowing an alternating sum is positive













2












$begingroup$



Show that the sum$$sum_k=0^n n choose kfrac(-1)^kn+k+1$$ is a positive rational number.




It is easy to show that it is a rational number. But I am having trouble showing that this expression is positive. It might be some binomial expansion that I could not get.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Have you tried using induction on $n$ for example?
    $endgroup$
    – Minus One-Twelfth
    1 hour ago
















2












$begingroup$



Show that the sum$$sum_k=0^n n choose kfrac(-1)^kn+k+1$$ is a positive rational number.




It is easy to show that it is a rational number. But I am having trouble showing that this expression is positive. It might be some binomial expansion that I could not get.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Have you tried using induction on $n$ for example?
    $endgroup$
    – Minus One-Twelfth
    1 hour ago














2












2








2


1



$begingroup$



Show that the sum$$sum_k=0^n n choose kfrac(-1)^kn+k+1$$ is a positive rational number.




It is easy to show that it is a rational number. But I am having trouble showing that this expression is positive. It might be some binomial expansion that I could not get.










share|cite|improve this question











$endgroup$





Show that the sum$$sum_k=0^n n choose kfrac(-1)^kn+k+1$$ is a positive rational number.




It is easy to show that it is a rational number. But I am having trouble showing that this expression is positive. It might be some binomial expansion that I could not get.







combinatorics summation binomial-coefficients binomial-ideals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago







Hitendra Kumar

















asked 1 hour ago









Hitendra KumarHitendra Kumar

606




606







  • 1




    $begingroup$
    Have you tried using induction on $n$ for example?
    $endgroup$
    – Minus One-Twelfth
    1 hour ago













  • 1




    $begingroup$
    Have you tried using induction on $n$ for example?
    $endgroup$
    – Minus One-Twelfth
    1 hour ago








1




1




$begingroup$
Have you tried using induction on $n$ for example?
$endgroup$
– Minus One-Twelfth
1 hour ago





$begingroup$
Have you tried using induction on $n$ for example?
$endgroup$
– Minus One-Twelfth
1 hour ago











3 Answers
3






active

oldest

votes


















4












$begingroup$

Direct proof:
$$beginsplit
sum_k=0^n nchoose kfrac(-1)^kn+k+1 &=sum_k=0^n nchoose k(-1)^kint_0^1 x^n+kdx\
&=int_0^1x^nsum_k=0^n nchoose k(-x)^kdx\
&=int_0^1x^n(1-x)^ndx
endsplit$$

The latter is clearly a positive number.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks,I got it.
    $endgroup$
    – Hitendra Kumar
    39 mins ago










  • $begingroup$
    You're welcome!
    $endgroup$
    – Stefan Lafon
    38 mins ago










  • $begingroup$
    How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
    $endgroup$
    – NoChance
    38 mins ago






  • 1




    $begingroup$
    It's a "known trick" that $frac 1 p+1 = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
    $endgroup$
    – Stefan Lafon
    32 mins ago










  • $begingroup$
    Thanks for responding.Got it.
    $endgroup$
    – NoChance
    22 mins ago



















3












$begingroup$

When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.



When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.



.....



Get it?






share|cite|improve this answer









$endgroup$












  • $begingroup$
    sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
    $endgroup$
    – Hitendra Kumar
    1 hour ago


















0












$begingroup$

We can specifically prove that
$$
boxedsum_k=0^n n choose kfrac(-1)^kn+k+1=left((2n+1)binom2nnright)^-1
$$

To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $n$. Consider this:




What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?




The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binomn1frac1n+2$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.






share|cite









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3157740%2fshowing-a-sum-is-positive%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Direct proof:
    $$beginsplit
    sum_k=0^n nchoose kfrac(-1)^kn+k+1 &=sum_k=0^n nchoose k(-1)^kint_0^1 x^n+kdx\
    &=int_0^1x^nsum_k=0^n nchoose k(-x)^kdx\
    &=int_0^1x^n(1-x)^ndx
    endsplit$$

    The latter is clearly a positive number.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Thanks,I got it.
      $endgroup$
      – Hitendra Kumar
      39 mins ago










    • $begingroup$
      You're welcome!
      $endgroup$
      – Stefan Lafon
      38 mins ago










    • $begingroup$
      How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
      $endgroup$
      – NoChance
      38 mins ago






    • 1




      $begingroup$
      It's a "known trick" that $frac 1 p+1 = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
      $endgroup$
      – Stefan Lafon
      32 mins ago










    • $begingroup$
      Thanks for responding.Got it.
      $endgroup$
      – NoChance
      22 mins ago
















    4












    $begingroup$

    Direct proof:
    $$beginsplit
    sum_k=0^n nchoose kfrac(-1)^kn+k+1 &=sum_k=0^n nchoose k(-1)^kint_0^1 x^n+kdx\
    &=int_0^1x^nsum_k=0^n nchoose k(-x)^kdx\
    &=int_0^1x^n(1-x)^ndx
    endsplit$$

    The latter is clearly a positive number.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Thanks,I got it.
      $endgroup$
      – Hitendra Kumar
      39 mins ago










    • $begingroup$
      You're welcome!
      $endgroup$
      – Stefan Lafon
      38 mins ago










    • $begingroup$
      How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
      $endgroup$
      – NoChance
      38 mins ago






    • 1




      $begingroup$
      It's a "known trick" that $frac 1 p+1 = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
      $endgroup$
      – Stefan Lafon
      32 mins ago










    • $begingroup$
      Thanks for responding.Got it.
      $endgroup$
      – NoChance
      22 mins ago














    4












    4








    4





    $begingroup$

    Direct proof:
    $$beginsplit
    sum_k=0^n nchoose kfrac(-1)^kn+k+1 &=sum_k=0^n nchoose k(-1)^kint_0^1 x^n+kdx\
    &=int_0^1x^nsum_k=0^n nchoose k(-x)^kdx\
    &=int_0^1x^n(1-x)^ndx
    endsplit$$

    The latter is clearly a positive number.






    share|cite|improve this answer









    $endgroup$



    Direct proof:
    $$beginsplit
    sum_k=0^n nchoose kfrac(-1)^kn+k+1 &=sum_k=0^n nchoose k(-1)^kint_0^1 x^n+kdx\
    &=int_0^1x^nsum_k=0^n nchoose k(-x)^kdx\
    &=int_0^1x^n(1-x)^ndx
    endsplit$$

    The latter is clearly a positive number.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 1 hour ago









    Stefan LafonStefan Lafon

    3,00019




    3,00019











    • $begingroup$
      Thanks,I got it.
      $endgroup$
      – Hitendra Kumar
      39 mins ago










    • $begingroup$
      You're welcome!
      $endgroup$
      – Stefan Lafon
      38 mins ago










    • $begingroup$
      How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
      $endgroup$
      – NoChance
      38 mins ago






    • 1




      $begingroup$
      It's a "known trick" that $frac 1 p+1 = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
      $endgroup$
      – Stefan Lafon
      32 mins ago










    • $begingroup$
      Thanks for responding.Got it.
      $endgroup$
      – NoChance
      22 mins ago

















    • $begingroup$
      Thanks,I got it.
      $endgroup$
      – Hitendra Kumar
      39 mins ago










    • $begingroup$
      You're welcome!
      $endgroup$
      – Stefan Lafon
      38 mins ago










    • $begingroup$
      How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
      $endgroup$
      – NoChance
      38 mins ago






    • 1




      $begingroup$
      It's a "known trick" that $frac 1 p+1 = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
      $endgroup$
      – Stefan Lafon
      32 mins ago










    • $begingroup$
      Thanks for responding.Got it.
      $endgroup$
      – NoChance
      22 mins ago
















    $begingroup$
    Thanks,I got it.
    $endgroup$
    – Hitendra Kumar
    39 mins ago




    $begingroup$
    Thanks,I got it.
    $endgroup$
    – Hitendra Kumar
    39 mins ago












    $begingroup$
    You're welcome!
    $endgroup$
    – Stefan Lafon
    38 mins ago




    $begingroup$
    You're welcome!
    $endgroup$
    – Stefan Lafon
    38 mins ago












    $begingroup$
    How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
    $endgroup$
    – NoChance
    38 mins ago




    $begingroup$
    How did you conclude that the sum is a limited integral? Do you know where can I find more on this on-line? Thanks.
    $endgroup$
    – NoChance
    38 mins ago




    1




    1




    $begingroup$
    It's a "known trick" that $frac 1 p+1 = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
    $endgroup$
    – Stefan Lafon
    32 mins ago




    $begingroup$
    It's a "known trick" that $frac 1 p+1 = int_0^1x^pdx$. Then I noticed that the sum looked almost like that of the binomial theorem.
    $endgroup$
    – Stefan Lafon
    32 mins ago












    $begingroup$
    Thanks for responding.Got it.
    $endgroup$
    – NoChance
    22 mins ago





    $begingroup$
    Thanks for responding.Got it.
    $endgroup$
    – NoChance
    22 mins ago












    3












    $begingroup$

    When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.



    When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.



    .....



    Get it?






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
      $endgroup$
      – Hitendra Kumar
      1 hour ago















    3












    $begingroup$

    When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.



    When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.



    .....



    Get it?






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
      $endgroup$
      – Hitendra Kumar
      1 hour ago













    3












    3








    3





    $begingroup$

    When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.



    When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.



    .....



    Get it?






    share|cite|improve this answer









    $endgroup$



    When $k=0$ the term is positive. When $k=1$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=0$ TERM.



    When $k=2$ the term is positive. When $k=3$ the term is negative BUT SMALLER (in absolute value) THAN THE $k=2$ TERM.



    .....



    Get it?







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 1 hour ago









    David G. StorkDavid G. Stork

    11.1k41432




    11.1k41432











    • $begingroup$
      sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
      $endgroup$
      – Hitendra Kumar
      1 hour ago
















    • $begingroup$
      sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
      $endgroup$
      – Hitendra Kumar
      1 hour ago















    $begingroup$
    sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
    $endgroup$
    – Hitendra Kumar
    1 hour ago




    $begingroup$
    sorry, I did not write question correctly. Now, I have corrected that. By looking at your answer I realized my mistake. Thanks
    $endgroup$
    – Hitendra Kumar
    1 hour ago











    0












    $begingroup$

    We can specifically prove that
    $$
    boxedsum_k=0^n n choose kfrac(-1)^kn+k+1=left((2n+1)binom2nnright)^-1
    $$

    To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $n$. Consider this:




    What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?




    The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binomn1frac1n+2$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.






    share|cite









    $endgroup$

















      0












      $begingroup$

      We can specifically prove that
      $$
      boxedsum_k=0^n n choose kfrac(-1)^kn+k+1=left((2n+1)binom2nnright)^-1
      $$

      To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $n$. Consider this:




      What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?




      The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binomn1frac1n+2$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.






      share|cite









      $endgroup$















        0












        0








        0





        $begingroup$

        We can specifically prove that
        $$
        boxedsum_k=0^n n choose kfrac(-1)^kn+k+1=left((2n+1)binom2nnright)^-1
        $$

        To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $n$. Consider this:




        What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?




        The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binomn1frac1n+2$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.






        share|cite









        $endgroup$



        We can specifically prove that
        $$
        boxedsum_k=0^n n choose kfrac(-1)^kn+k+1=left((2n+1)binom2nnright)^-1
        $$

        To see this, shuffle a deck of $2n+1$ cards numbered $1$ to $n$. Consider this:




        What is the probability that card number $n+1$ is in the middle of the deck, and cards numbered $1$ to $n$ are below it?




        The easy answer is the fraction on the RHS. The LHS can be interpreted as an application of the principle of inclusion exclusion. Namely, we first take the probability that card number of $n+1$ is the lowest of the cards numbered $n+1,n+2,dots,2n+1$. This is the $k=0$ term. From this, for each $i=1,dots,n$, we subtract the probability that $n+1$ is the lowest of the list $i,n+1,n+2,dots,2n+1$. This is a bad event, because we want $n+1$ to be above $i$. Doing this for each $i$, we subtract $binomn1frac1n+2$. We then must add back in the doubly subtracted events, subtract the triple intersections, and so on, eventually ending with the alternating sum on the left.







        share|cite












        share|cite



        share|cite










        answered 3 mins ago









        Mike EarnestMike Earnest

        25.5k22151




        25.5k22151



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3157740%2fshowing-a-sum-is-positive%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Isabella Eugénie Boyer Biographie | Références | Menu de navigationmodifiermodifier le codeComparator to Compute the Relative Value of a U.S. Dollar Amount – 1774 to Present.

            Lioubotyn Sommaire Géographie | Histoire | Population | Notes et références | Liens externes | Menu de navigationlubotin.kharkov.uamodifier« Recensements et estimations de la population depuis 1897 »« Office des statistiques d'Ukraine : population au 1er janvier 2010, 2011 et 2012 »« Office des statistiques d'Ukraine : population au 1er janvier 2011, 2012 et 2013 »Informations officiellesCartes topographiquesCarte routièrem

            Mpande kaSenzangakhona Biographie | Références | Menu de navigationmodifierMpande kaSenzangakhonavoir la liste des auteursm