Why does this cyclic subgroup have only 4 subgroups?What does it mean to have no proper non-trivial subgroupCyclic subgroup of a cyclic groupProof on Cyclic Subgroup GenerationIf $G$ has only 2 non-trivial proper subgroups H, N, then H, N are cyclic subgroup of $G$.Number of cyclic subgroups of the alternating group $A_8$All groups of order 10 have a proper normal subgroupHow many subgroups of order 17 does $S_17$ have?Why do Sylow $3$-subgroups intersect only in the identity?Group with proper subgroups infinite cyclicHow many noncyclic submodules with $9$ elements does $V$ have?
Mathematica command that allows it to read my intentions
Madden-Julian Oscillation (MJO) - How to interpret the index?
Is "remove commented out code" correct English?
Valid term from quadratic sequence?
Venezuelan girlfriend wants to travel the USA to be with me. What is the process?
Plagiarism or not?
Should I cover my bicycle overnight while bikepacking?
Unlock My Phone! February 2018
How much of data wrangling is a data scientist's job?
How do I handle a potential work/personal life conflict as the manager of one of my friends?
Examples of smooth manifolds admitting inbetween one and a continuum of complex structures
How to add frame around section using titlesec?
Alternative to sending password over mail?
Unable to supress ligatures in headings which are set in Caps
Would Slavery Reparations be considered Bills of Attainder and hence Illegal?
GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?
Why was the shrinking from 8″ made only to 5.25″ and not smaller (4″ or less)?
Determining Impedance With An Antenna Analyzer
Why would the Red Woman birth a shadow if she worshipped the Lord of the Light?
What does the expression "A Mann!" means
Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?
What is a romance in Latin?
Why is consensus so controversial in Britain?
Is it acceptable for a professor to tell male students to not think that they are smarter than female students?
Why does this cyclic subgroup have only 4 subgroups?
What does it mean to have no proper non-trivial subgroupCyclic subgroup of a cyclic groupProof on Cyclic Subgroup GenerationIf $G$ has only 2 non-trivial proper subgroups H, N, then H, N are cyclic subgroup of $G$.Number of cyclic subgroups of the alternating group $A_8$All groups of order 10 have a proper normal subgroupHow many subgroups of order 17 does $S_17$ have?Why do Sylow $3$-subgroups intersect only in the identity?Group with proper subgroups infinite cyclicHow many noncyclic submodules with $9$ elements does $V$ have?
$begingroup$
Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.
Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.
Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?
There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.
If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.
Is my thought process correct?
abstract-algebra group-theory
$endgroup$
add a comment |
$begingroup$
Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.
Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.
Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?
There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.
If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.
Is my thought process correct?
abstract-algebra group-theory
$endgroup$
$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
2 hours ago
2
$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
2 hours ago
$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
1 hour ago
add a comment |
$begingroup$
Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.
Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.
Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?
There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.
If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.
Is my thought process correct?
abstract-algebra group-theory
$endgroup$
Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.
Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.
Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?
There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.
If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.
Is my thought process correct?
abstract-algebra group-theory
abstract-algebra group-theory
edited 2 hours ago
J. W. Tanner
4,3651320
4,3651320
asked 2 hours ago
Evan KimEvan Kim
66319
66319
$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
2 hours ago
2
$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
2 hours ago
$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
1 hour ago
add a comment |
$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
2 hours ago
2
$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
2 hours ago
$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
2 hours ago
$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
2 hours ago
2
2
$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
2 hours ago
$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
2 hours ago
$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
1 hour ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$
But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.
$endgroup$
add a comment |
$begingroup$
$lbrace 1, a^5 rbrace$ is not a subgroup because
$$a^5 . a^5 = a^4$$
is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.
$endgroup$
add a comment |
$begingroup$
Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.
It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.
$endgroup$
add a comment |
$begingroup$
Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.
To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.
$endgroup$
$begingroup$
Why the downvote?
$endgroup$
– Shaun
2 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3173761%2fwhy-does-this-cyclic-subgroup-have-only-4-subgroups%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$
But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.
$endgroup$
add a comment |
$begingroup$
$[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$
But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.
$endgroup$
add a comment |
$begingroup$
$[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$
But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.
$endgroup$
$[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$
But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.
answered 2 hours ago
PeterPeter
49k1240137
49k1240137
add a comment |
add a comment |
$begingroup$
$lbrace 1, a^5 rbrace$ is not a subgroup because
$$a^5 . a^5 = a^4$$
is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.
$endgroup$
add a comment |
$begingroup$
$lbrace 1, a^5 rbrace$ is not a subgroup because
$$a^5 . a^5 = a^4$$
is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.
$endgroup$
add a comment |
$begingroup$
$lbrace 1, a^5 rbrace$ is not a subgroup because
$$a^5 . a^5 = a^4$$
is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.
$endgroup$
$lbrace 1, a^5 rbrace$ is not a subgroup because
$$a^5 . a^5 = a^4$$
is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.
answered 2 hours ago
TheSilverDoeTheSilverDoe
5,157215
5,157215
add a comment |
add a comment |
$begingroup$
Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.
It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.
$endgroup$
add a comment |
$begingroup$
Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.
It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.
$endgroup$
add a comment |
$begingroup$
Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.
It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.
$endgroup$
Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.
It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.
answered 1 hour ago
Jack PfaffingerJack Pfaffinger
3841112
3841112
add a comment |
add a comment |
$begingroup$
Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.
To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.
$endgroup$
$begingroup$
Why the downvote?
$endgroup$
– Shaun
2 hours ago
add a comment |
$begingroup$
Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.
To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.
$endgroup$
$begingroup$
Why the downvote?
$endgroup$
– Shaun
2 hours ago
add a comment |
$begingroup$
Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.
To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.
$endgroup$
Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.
To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.
answered 2 hours ago
ShaunShaun
10.1k113685
10.1k113685
$begingroup$
Why the downvote?
$endgroup$
– Shaun
2 hours ago
add a comment |
$begingroup$
Why the downvote?
$endgroup$
– Shaun
2 hours ago
$begingroup$
Why the downvote?
$endgroup$
– Shaun
2 hours ago
$begingroup$
Why the downvote?
$endgroup$
– Shaun
2 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3173761%2fwhy-does-this-cyclic-subgroup-have-only-4-subgroups%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
2 hours ago
2
$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
2 hours ago
$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
1 hour ago