Missile strike detection (but it's not actually a missile) The Next CEO of Stack OverflowZombie army is bad idea. But why actually?How does a spacecraft attempt an intercept course with a hostile one realistically (Part II)?Which fast STL drive could not be weaponized or results in perpetual motion?What relations of civilizations living on the same world but not the same living environment would be?How can I make guns available, but not swords?Would bigger space war ships be actually better or not?How to build a literal colossus of disease?How many nukes can explode in the US without seriously affecting Canada?Which superpower is a huge advantage in medieval fights, but not so much in modern fights?Aliens englobed the Solar System: will we notice?

Why isn't the Mueller report being released completely and unredacted?

How many extra stops do monopods offer for tele photographs?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

"misplaced omit" error when >centering columns

How a 64-bit process virtual address space is divided in Linux?

Should I tutor a student who I know has cheated on their homework?

Is it convenient to ask the journal's editor for two additional days to complete a review?

What was the first Unix version to run on a microcomputer?

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

Axiom Schema vs Axiom

How did people program for Consoles with multiple CPUs?

How to install OpenCV on Raspbian Stretch?

Flying from Cape Town to England and return to another province

The exact meaning of 'Mom made me a sandwich'

Find non-case sensitive string in a mixed list of elements?

Is it okay to majorly distort historical facts while writing a fiction story?

Why is quantifier elimination desirable for a given theory?

Where do students learn to solve polynomial equations these days?

Can MTA send mail via a relay without being told so?

Is it possible to use a NPN BJT as switch, from single power source?

Powershell. How to parse gci Name?

What is the value of α and β in a triangle?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Why do airplanes bank sharply to the right after air-to-air refueling?



Missile strike detection (but it's not actually a missile)



The Next CEO of Stack OverflowZombie army is bad idea. But why actually?How does a spacecraft attempt an intercept course with a hostile one realistically (Part II)?Which fast STL drive could not be weaponized or results in perpetual motion?What relations of civilizations living on the same world but not the same living environment would be?How can I make guns available, but not swords?Would bigger space war ships be actually better or not?How to build a literal colossus of disease?How many nukes can explode in the US without seriously affecting Canada?Which superpower is a huge advantage in medieval fights, but not so much in modern fights?Aliens englobed the Solar System: will we notice?










2












$begingroup$


I'm writing a story to be set around the late 1980s/early 1990s. The story opens with a spaceship crashing to Earth, hitting and destroying a large part of central London. The idea is that, before the spaceship actually hits, it will be detected by a missile strike detection system and the operators will think that a nuclear missile has been fired at the UK. The UK will then fire a retaliatory strike at Russia, thinking that they are responsible for the London strike, thus setting off the whole mutually-assured destruction thing and triggering a nuclear war that leads to the collapse of society.



My question is this: how would a nuclear strike have been detected in that era? And could a spaceship crashing (out of control, but travelling in a straight-downward direction) theoretically be detected on such a system? My plan at the moment is that the ship could have a radiological signature, to really convince the detection system's operators that they're looking at a genuine nuclear strike, and it will only be detected once it's entered Earth's orbit (so they won't have tracked it across the solar system or anything like that, and won't realise what the object they're tracking really is) but a better idea of how the real-world systems worked (or still work, if there has been no change) would really help.



My opening scene currently has a technician in a monitoring station picking up the ship on his equipment, and telephoning a superior officer to inform them but I'm not sure how accurate that is.









share







New contributor




Ziggy STARDIS is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    Nobody will fire a retaliatory strike without knowing for darned sure where the first strike originated. That's basic military professionalism. Otherwise a deception to incinerate millions would be too easy. That's why most missile detection is focused on identifying the origin of a launch.
    $endgroup$
    – user535733
    5 hours ago







  • 1




    $begingroup$
    (1) What's a "missile strike detection system"? The only hit Google finds for this phrase is this very question. (2) A spaceship coming from outer space cannot be confused with a ballistic missile by any imaginable early warning system. It comes on the wrong trajectory, with the wrong speed, and it has the wrong radar signature.
    $endgroup$
    – AlexP
    5 hours ago






  • 2




    $begingroup$
    Nuclear weapons have little radiological signature. Firing a retaliatory strike after 1 potential missile is rare: a 1st strike would have hundreds of missiles, not just few missiles, otherwise it will leave the opponent's arsenal intact for a 2nd strike, so such instances could have been interpreted as false alarms. Early warning systems were prone to false positives (e.g. one such instance of false positive happened in 1983 en.wikipedia.org/wiki/1983_Soviet_nuclear_false_alarm_incident)
    $endgroup$
    – maria_c
    4 hours ago






  • 1




    $begingroup$
    There is no such thing as a missile strike detection system because by then it is too late to do anything. All of the focus was on missile launch detection because you needed as early a warning as possible to sound alarms, get key personnel to safety and so you could launch your own counter-strike before the enemy strike destroyed all your weapons while they are still in their launchers.
    $endgroup$
    – krb
    4 hours ago















2












$begingroup$


I'm writing a story to be set around the late 1980s/early 1990s. The story opens with a spaceship crashing to Earth, hitting and destroying a large part of central London. The idea is that, before the spaceship actually hits, it will be detected by a missile strike detection system and the operators will think that a nuclear missile has been fired at the UK. The UK will then fire a retaliatory strike at Russia, thinking that they are responsible for the London strike, thus setting off the whole mutually-assured destruction thing and triggering a nuclear war that leads to the collapse of society.



My question is this: how would a nuclear strike have been detected in that era? And could a spaceship crashing (out of control, but travelling in a straight-downward direction) theoretically be detected on such a system? My plan at the moment is that the ship could have a radiological signature, to really convince the detection system's operators that they're looking at a genuine nuclear strike, and it will only be detected once it's entered Earth's orbit (so they won't have tracked it across the solar system or anything like that, and won't realise what the object they're tracking really is) but a better idea of how the real-world systems worked (or still work, if there has been no change) would really help.



My opening scene currently has a technician in a monitoring station picking up the ship on his equipment, and telephoning a superior officer to inform them but I'm not sure how accurate that is.









share







New contributor




Ziggy STARDIS is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    Nobody will fire a retaliatory strike without knowing for darned sure where the first strike originated. That's basic military professionalism. Otherwise a deception to incinerate millions would be too easy. That's why most missile detection is focused on identifying the origin of a launch.
    $endgroup$
    – user535733
    5 hours ago







  • 1




    $begingroup$
    (1) What's a "missile strike detection system"? The only hit Google finds for this phrase is this very question. (2) A spaceship coming from outer space cannot be confused with a ballistic missile by any imaginable early warning system. It comes on the wrong trajectory, with the wrong speed, and it has the wrong radar signature.
    $endgroup$
    – AlexP
    5 hours ago






  • 2




    $begingroup$
    Nuclear weapons have little radiological signature. Firing a retaliatory strike after 1 potential missile is rare: a 1st strike would have hundreds of missiles, not just few missiles, otherwise it will leave the opponent's arsenal intact for a 2nd strike, so such instances could have been interpreted as false alarms. Early warning systems were prone to false positives (e.g. one such instance of false positive happened in 1983 en.wikipedia.org/wiki/1983_Soviet_nuclear_false_alarm_incident)
    $endgroup$
    – maria_c
    4 hours ago






  • 1




    $begingroup$
    There is no such thing as a missile strike detection system because by then it is too late to do anything. All of the focus was on missile launch detection because you needed as early a warning as possible to sound alarms, get key personnel to safety and so you could launch your own counter-strike before the enemy strike destroyed all your weapons while they are still in their launchers.
    $endgroup$
    – krb
    4 hours ago













2












2








2





$begingroup$


I'm writing a story to be set around the late 1980s/early 1990s. The story opens with a spaceship crashing to Earth, hitting and destroying a large part of central London. The idea is that, before the spaceship actually hits, it will be detected by a missile strike detection system and the operators will think that a nuclear missile has been fired at the UK. The UK will then fire a retaliatory strike at Russia, thinking that they are responsible for the London strike, thus setting off the whole mutually-assured destruction thing and triggering a nuclear war that leads to the collapse of society.



My question is this: how would a nuclear strike have been detected in that era? And could a spaceship crashing (out of control, but travelling in a straight-downward direction) theoretically be detected on such a system? My plan at the moment is that the ship could have a radiological signature, to really convince the detection system's operators that they're looking at a genuine nuclear strike, and it will only be detected once it's entered Earth's orbit (so they won't have tracked it across the solar system or anything like that, and won't realise what the object they're tracking really is) but a better idea of how the real-world systems worked (or still work, if there has been no change) would really help.



My opening scene currently has a technician in a monitoring station picking up the ship on his equipment, and telephoning a superior officer to inform them but I'm not sure how accurate that is.









share







New contributor




Ziggy STARDIS is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm writing a story to be set around the late 1980s/early 1990s. The story opens with a spaceship crashing to Earth, hitting and destroying a large part of central London. The idea is that, before the spaceship actually hits, it will be detected by a missile strike detection system and the operators will think that a nuclear missile has been fired at the UK. The UK will then fire a retaliatory strike at Russia, thinking that they are responsible for the London strike, thus setting off the whole mutually-assured destruction thing and triggering a nuclear war that leads to the collapse of society.



My question is this: how would a nuclear strike have been detected in that era? And could a spaceship crashing (out of control, but travelling in a straight-downward direction) theoretically be detected on such a system? My plan at the moment is that the ship could have a radiological signature, to really convince the detection system's operators that they're looking at a genuine nuclear strike, and it will only be detected once it's entered Earth's orbit (so they won't have tracked it across the solar system or anything like that, and won't realise what the object they're tracking really is) but a better idea of how the real-world systems worked (or still work, if there has been no change) would really help.



My opening scene currently has a technician in a monitoring station picking up the ship on his equipment, and telephoning a superior officer to inform them but I'm not sure how accurate that is.







science-fiction warfare alternate-history





share







New contributor




Ziggy STARDIS is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share







New contributor




Ziggy STARDIS is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share



share






New contributor




Ziggy STARDIS is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









Ziggy STARDISZiggy STARDIS

141




141




New contributor




Ziggy STARDIS is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Ziggy STARDIS is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Ziggy STARDIS is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2




    $begingroup$
    Nobody will fire a retaliatory strike without knowing for darned sure where the first strike originated. That's basic military professionalism. Otherwise a deception to incinerate millions would be too easy. That's why most missile detection is focused on identifying the origin of a launch.
    $endgroup$
    – user535733
    5 hours ago







  • 1




    $begingroup$
    (1) What's a "missile strike detection system"? The only hit Google finds for this phrase is this very question. (2) A spaceship coming from outer space cannot be confused with a ballistic missile by any imaginable early warning system. It comes on the wrong trajectory, with the wrong speed, and it has the wrong radar signature.
    $endgroup$
    – AlexP
    5 hours ago






  • 2




    $begingroup$
    Nuclear weapons have little radiological signature. Firing a retaliatory strike after 1 potential missile is rare: a 1st strike would have hundreds of missiles, not just few missiles, otherwise it will leave the opponent's arsenal intact for a 2nd strike, so such instances could have been interpreted as false alarms. Early warning systems were prone to false positives (e.g. one such instance of false positive happened in 1983 en.wikipedia.org/wiki/1983_Soviet_nuclear_false_alarm_incident)
    $endgroup$
    – maria_c
    4 hours ago






  • 1




    $begingroup$
    There is no such thing as a missile strike detection system because by then it is too late to do anything. All of the focus was on missile launch detection because you needed as early a warning as possible to sound alarms, get key personnel to safety and so you could launch your own counter-strike before the enemy strike destroyed all your weapons while they are still in their launchers.
    $endgroup$
    – krb
    4 hours ago












  • 2




    $begingroup$
    Nobody will fire a retaliatory strike without knowing for darned sure where the first strike originated. That's basic military professionalism. Otherwise a deception to incinerate millions would be too easy. That's why most missile detection is focused on identifying the origin of a launch.
    $endgroup$
    – user535733
    5 hours ago







  • 1




    $begingroup$
    (1) What's a "missile strike detection system"? The only hit Google finds for this phrase is this very question. (2) A spaceship coming from outer space cannot be confused with a ballistic missile by any imaginable early warning system. It comes on the wrong trajectory, with the wrong speed, and it has the wrong radar signature.
    $endgroup$
    – AlexP
    5 hours ago






  • 2




    $begingroup$
    Nuclear weapons have little radiological signature. Firing a retaliatory strike after 1 potential missile is rare: a 1st strike would have hundreds of missiles, not just few missiles, otherwise it will leave the opponent's arsenal intact for a 2nd strike, so such instances could have been interpreted as false alarms. Early warning systems were prone to false positives (e.g. one such instance of false positive happened in 1983 en.wikipedia.org/wiki/1983_Soviet_nuclear_false_alarm_incident)
    $endgroup$
    – maria_c
    4 hours ago






  • 1




    $begingroup$
    There is no such thing as a missile strike detection system because by then it is too late to do anything. All of the focus was on missile launch detection because you needed as early a warning as possible to sound alarms, get key personnel to safety and so you could launch your own counter-strike before the enemy strike destroyed all your weapons while they are still in their launchers.
    $endgroup$
    – krb
    4 hours ago







2




2




$begingroup$
Nobody will fire a retaliatory strike without knowing for darned sure where the first strike originated. That's basic military professionalism. Otherwise a deception to incinerate millions would be too easy. That's why most missile detection is focused on identifying the origin of a launch.
$endgroup$
– user535733
5 hours ago





$begingroup$
Nobody will fire a retaliatory strike without knowing for darned sure where the first strike originated. That's basic military professionalism. Otherwise a deception to incinerate millions would be too easy. That's why most missile detection is focused on identifying the origin of a launch.
$endgroup$
– user535733
5 hours ago





1




1




$begingroup$
(1) What's a "missile strike detection system"? The only hit Google finds for this phrase is this very question. (2) A spaceship coming from outer space cannot be confused with a ballistic missile by any imaginable early warning system. It comes on the wrong trajectory, with the wrong speed, and it has the wrong radar signature.
$endgroup$
– AlexP
5 hours ago




$begingroup$
(1) What's a "missile strike detection system"? The only hit Google finds for this phrase is this very question. (2) A spaceship coming from outer space cannot be confused with a ballistic missile by any imaginable early warning system. It comes on the wrong trajectory, with the wrong speed, and it has the wrong radar signature.
$endgroup$
– AlexP
5 hours ago




2




2




$begingroup$
Nuclear weapons have little radiological signature. Firing a retaliatory strike after 1 potential missile is rare: a 1st strike would have hundreds of missiles, not just few missiles, otherwise it will leave the opponent's arsenal intact for a 2nd strike, so such instances could have been interpreted as false alarms. Early warning systems were prone to false positives (e.g. one such instance of false positive happened in 1983 en.wikipedia.org/wiki/1983_Soviet_nuclear_false_alarm_incident)
$endgroup$
– maria_c
4 hours ago




$begingroup$
Nuclear weapons have little radiological signature. Firing a retaliatory strike after 1 potential missile is rare: a 1st strike would have hundreds of missiles, not just few missiles, otherwise it will leave the opponent's arsenal intact for a 2nd strike, so such instances could have been interpreted as false alarms. Early warning systems were prone to false positives (e.g. one such instance of false positive happened in 1983 en.wikipedia.org/wiki/1983_Soviet_nuclear_false_alarm_incident)
$endgroup$
– maria_c
4 hours ago




1




1




$begingroup$
There is no such thing as a missile strike detection system because by then it is too late to do anything. All of the focus was on missile launch detection because you needed as early a warning as possible to sound alarms, get key personnel to safety and so you could launch your own counter-strike before the enemy strike destroyed all your weapons while they are still in their launchers.
$endgroup$
– krb
4 hours ago




$begingroup$
There is no such thing as a missile strike detection system because by then it is too late to do anything. All of the focus was on missile launch detection because you needed as early a warning as possible to sound alarms, get key personnel to safety and so you could launch your own counter-strike before the enemy strike destroyed all your weapons while they are still in their launchers.
$endgroup$
– krb
4 hours ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

What kind of ICBM/missile tracking tech did they have in the 80s?



Sonic boom Missiles really haul the mail, and the sonic boom is fairly distinctive. With listening posts throughout the world/nation, it's possible to track the movement of the missile. With fast enough computers (a bit of a problem in the 80s), this could be used to extrapolate an actual position (sonic booms happen after the fact).



Heat Missiles are notorious polluters with all that rocket thrust to keep them going. Consequently, there's a boatload of heat. To be honest, there's heat all over. A house fire can produce more therms than the exhaust of a rocket, so we're back to computers doing things like analyzing the path and speed of the heat source. Fast + ballistic = bad. Stationary and sea-level = call the fire department.



Radar Missiles are small, but not that small. Radar can pick them so long as the radar system's refresh time is fast enough to capture their passing. Some radar installations in the 80s could do it, but most couldn't. Do you remember that lovely line that sweeps around 360° on the old WWII radar screens? That's the position of the rotating antenna that's emitting/detecting the radar signal. We don't draw the line anymore, but it's still there, and if it can't get around fast enough, it can't see the missile. (Note that phased array radar do this electronically along a narrow arc, which makes them fast. They're great for seeing what's in front of a plane, they're less useful for watching a horizon, but it's better than what it was.)



Visual In the end, machines make mistakes. Nothings more useful than a pair of eyes and a set of binoculars. Pro: more trustworthy identification. Con: You don't have long before... oh, cra... BOOM!



Radiation Finally, though unlikely to have been used regularly (or at all) during the 80s, the tech did exist to track radiation sources. Usually that's not an issue until after the missile has hit, but you could believably use it in a story (hey, if The Blacklist can suggest six Soviet briefcase nukes hidden in the U.S. in the 60s, then we Americans will suck down just about anything).



Could any or all of these be used to track a spaceship? Sure! The biggest problem would be the confusion over the fact that it's the wrong kind of ballistic path. It's a "fall from orbit" ballistic path rather than a "launched from my enemy's backyard" path. That'd confuse NORAD for a bit, but it's quite believable that they'd see it.



Yeah, but what about today?



I doubt any of this could be done in the 80s. I'd be mildly surprised of some of it could actually be done today. But for the sake of being thorough.



Light reflection Objects in the sky reflect/occlude light. It's one of the ways we detect new stars and planets — by looking for light that should be there, but isn't, or that shouldn't be there, but is.



EM emissions Anything that uses electronics emits EM noise. To a degree this can be blocked, but sometimes it can't. Add to this that thermal differentials, metallic stress, communications to/from/with the missile... all of this could be detected and triangulated.



Humidity AKA contrails, the condensation of water behind the high-heat/high-pressure-sudden-cold/low-pressure exhaust of a jet/rocket engine. Whether they're visible or not, the change in humidity is there, and when light passes through it, that light changes. (And if you can see it... see "Visual," above.)






share|improve this answer











$endgroup$




















    2












    $begingroup$

    There have been several "close calls" in Soviet and US history regarding false detection of missile launches or strikes. The so-called "Great Storm" in 1967 is one example, sunlight reflecting off clouds in 1983 is another.



    Detecting missile launches in late 1980s / early 1990s is extremely different than today - especially on the soviet side of the fence (the US was more forward-moving with computerized technology in the 80s/90s than the soviets, but the details of that are FAR too tedious to explain in answer to this question). The "old" (meaning pre-computerized) systems relied on radio transmissions, random bursts of light (ie explosions that resembled the bursts similar to that of rockets taking off), and so on. More advanced computerized systems came with more precise detection systems (and therefore less error rates), but these only came to the US in the early 1980s (with President Reagan's so-called "star wars" advancements), and to Russia in the mid 1990s.



    So before the computerized advancements, the "crash" of a spaceship - if it caused a small or medium-sized explosion near a known US missile site - would almost certainly have triggered concern from the Russians as a nuclear launch.



    Another option is an alien craft that, by nature of operation, would interfere with radio operations on either (or both) sides of the fence, much like the 1967 event. This is not far-fetched; a complex space-craft might send radio waves cross-galaxy in a way that requires such large amounts of energy it blasts through the noise floor of radio frequencies.



    Yet another option is where the spaceship hits - if it hits a known target (like the White House, Congress, Supreme Court - or on the USSR side of the fence the Kremlin, Baku, etc) - might be wrongly perceived as an attack.






    share|improve this answer











    $endgroup$








    • 2




      $begingroup$
      That's "Star Wars" you dang hippie! 😝
      $endgroup$
      – JBH
      4 hours ago












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "579"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Ziggy STARDIS is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f142862%2fmissile-strike-detection-but-its-not-actually-a-missile%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    What kind of ICBM/missile tracking tech did they have in the 80s?



    Sonic boom Missiles really haul the mail, and the sonic boom is fairly distinctive. With listening posts throughout the world/nation, it's possible to track the movement of the missile. With fast enough computers (a bit of a problem in the 80s), this could be used to extrapolate an actual position (sonic booms happen after the fact).



    Heat Missiles are notorious polluters with all that rocket thrust to keep them going. Consequently, there's a boatload of heat. To be honest, there's heat all over. A house fire can produce more therms than the exhaust of a rocket, so we're back to computers doing things like analyzing the path and speed of the heat source. Fast + ballistic = bad. Stationary and sea-level = call the fire department.



    Radar Missiles are small, but not that small. Radar can pick them so long as the radar system's refresh time is fast enough to capture their passing. Some radar installations in the 80s could do it, but most couldn't. Do you remember that lovely line that sweeps around 360° on the old WWII radar screens? That's the position of the rotating antenna that's emitting/detecting the radar signal. We don't draw the line anymore, but it's still there, and if it can't get around fast enough, it can't see the missile. (Note that phased array radar do this electronically along a narrow arc, which makes them fast. They're great for seeing what's in front of a plane, they're less useful for watching a horizon, but it's better than what it was.)



    Visual In the end, machines make mistakes. Nothings more useful than a pair of eyes and a set of binoculars. Pro: more trustworthy identification. Con: You don't have long before... oh, cra... BOOM!



    Radiation Finally, though unlikely to have been used regularly (or at all) during the 80s, the tech did exist to track radiation sources. Usually that's not an issue until after the missile has hit, but you could believably use it in a story (hey, if The Blacklist can suggest six Soviet briefcase nukes hidden in the U.S. in the 60s, then we Americans will suck down just about anything).



    Could any or all of these be used to track a spaceship? Sure! The biggest problem would be the confusion over the fact that it's the wrong kind of ballistic path. It's a "fall from orbit" ballistic path rather than a "launched from my enemy's backyard" path. That'd confuse NORAD for a bit, but it's quite believable that they'd see it.



    Yeah, but what about today?



    I doubt any of this could be done in the 80s. I'd be mildly surprised of some of it could actually be done today. But for the sake of being thorough.



    Light reflection Objects in the sky reflect/occlude light. It's one of the ways we detect new stars and planets — by looking for light that should be there, but isn't, or that shouldn't be there, but is.



    EM emissions Anything that uses electronics emits EM noise. To a degree this can be blocked, but sometimes it can't. Add to this that thermal differentials, metallic stress, communications to/from/with the missile... all of this could be detected and triangulated.



    Humidity AKA contrails, the condensation of water behind the high-heat/high-pressure-sudden-cold/low-pressure exhaust of a jet/rocket engine. Whether they're visible or not, the change in humidity is there, and when light passes through it, that light changes. (And if you can see it... see "Visual," above.)






    share|improve this answer











    $endgroup$

















      2












      $begingroup$

      What kind of ICBM/missile tracking tech did they have in the 80s?



      Sonic boom Missiles really haul the mail, and the sonic boom is fairly distinctive. With listening posts throughout the world/nation, it's possible to track the movement of the missile. With fast enough computers (a bit of a problem in the 80s), this could be used to extrapolate an actual position (sonic booms happen after the fact).



      Heat Missiles are notorious polluters with all that rocket thrust to keep them going. Consequently, there's a boatload of heat. To be honest, there's heat all over. A house fire can produce more therms than the exhaust of a rocket, so we're back to computers doing things like analyzing the path and speed of the heat source. Fast + ballistic = bad. Stationary and sea-level = call the fire department.



      Radar Missiles are small, but not that small. Radar can pick them so long as the radar system's refresh time is fast enough to capture their passing. Some radar installations in the 80s could do it, but most couldn't. Do you remember that lovely line that sweeps around 360° on the old WWII radar screens? That's the position of the rotating antenna that's emitting/detecting the radar signal. We don't draw the line anymore, but it's still there, and if it can't get around fast enough, it can't see the missile. (Note that phased array radar do this electronically along a narrow arc, which makes them fast. They're great for seeing what's in front of a plane, they're less useful for watching a horizon, but it's better than what it was.)



      Visual In the end, machines make mistakes. Nothings more useful than a pair of eyes and a set of binoculars. Pro: more trustworthy identification. Con: You don't have long before... oh, cra... BOOM!



      Radiation Finally, though unlikely to have been used regularly (or at all) during the 80s, the tech did exist to track radiation sources. Usually that's not an issue until after the missile has hit, but you could believably use it in a story (hey, if The Blacklist can suggest six Soviet briefcase nukes hidden in the U.S. in the 60s, then we Americans will suck down just about anything).



      Could any or all of these be used to track a spaceship? Sure! The biggest problem would be the confusion over the fact that it's the wrong kind of ballistic path. It's a "fall from orbit" ballistic path rather than a "launched from my enemy's backyard" path. That'd confuse NORAD for a bit, but it's quite believable that they'd see it.



      Yeah, but what about today?



      I doubt any of this could be done in the 80s. I'd be mildly surprised of some of it could actually be done today. But for the sake of being thorough.



      Light reflection Objects in the sky reflect/occlude light. It's one of the ways we detect new stars and planets — by looking for light that should be there, but isn't, or that shouldn't be there, but is.



      EM emissions Anything that uses electronics emits EM noise. To a degree this can be blocked, but sometimes it can't. Add to this that thermal differentials, metallic stress, communications to/from/with the missile... all of this could be detected and triangulated.



      Humidity AKA contrails, the condensation of water behind the high-heat/high-pressure-sudden-cold/low-pressure exhaust of a jet/rocket engine. Whether they're visible or not, the change in humidity is there, and when light passes through it, that light changes. (And if you can see it... see "Visual," above.)






      share|improve this answer











      $endgroup$















        2












        2








        2





        $begingroup$

        What kind of ICBM/missile tracking tech did they have in the 80s?



        Sonic boom Missiles really haul the mail, and the sonic boom is fairly distinctive. With listening posts throughout the world/nation, it's possible to track the movement of the missile. With fast enough computers (a bit of a problem in the 80s), this could be used to extrapolate an actual position (sonic booms happen after the fact).



        Heat Missiles are notorious polluters with all that rocket thrust to keep them going. Consequently, there's a boatload of heat. To be honest, there's heat all over. A house fire can produce more therms than the exhaust of a rocket, so we're back to computers doing things like analyzing the path and speed of the heat source. Fast + ballistic = bad. Stationary and sea-level = call the fire department.



        Radar Missiles are small, but not that small. Radar can pick them so long as the radar system's refresh time is fast enough to capture their passing. Some radar installations in the 80s could do it, but most couldn't. Do you remember that lovely line that sweeps around 360° on the old WWII radar screens? That's the position of the rotating antenna that's emitting/detecting the radar signal. We don't draw the line anymore, but it's still there, and if it can't get around fast enough, it can't see the missile. (Note that phased array radar do this electronically along a narrow arc, which makes them fast. They're great for seeing what's in front of a plane, they're less useful for watching a horizon, but it's better than what it was.)



        Visual In the end, machines make mistakes. Nothings more useful than a pair of eyes and a set of binoculars. Pro: more trustworthy identification. Con: You don't have long before... oh, cra... BOOM!



        Radiation Finally, though unlikely to have been used regularly (or at all) during the 80s, the tech did exist to track radiation sources. Usually that's not an issue until after the missile has hit, but you could believably use it in a story (hey, if The Blacklist can suggest six Soviet briefcase nukes hidden in the U.S. in the 60s, then we Americans will suck down just about anything).



        Could any or all of these be used to track a spaceship? Sure! The biggest problem would be the confusion over the fact that it's the wrong kind of ballistic path. It's a "fall from orbit" ballistic path rather than a "launched from my enemy's backyard" path. That'd confuse NORAD for a bit, but it's quite believable that they'd see it.



        Yeah, but what about today?



        I doubt any of this could be done in the 80s. I'd be mildly surprised of some of it could actually be done today. But for the sake of being thorough.



        Light reflection Objects in the sky reflect/occlude light. It's one of the ways we detect new stars and planets — by looking for light that should be there, but isn't, or that shouldn't be there, but is.



        EM emissions Anything that uses electronics emits EM noise. To a degree this can be blocked, but sometimes it can't. Add to this that thermal differentials, metallic stress, communications to/from/with the missile... all of this could be detected and triangulated.



        Humidity AKA contrails, the condensation of water behind the high-heat/high-pressure-sudden-cold/low-pressure exhaust of a jet/rocket engine. Whether they're visible or not, the change in humidity is there, and when light passes through it, that light changes. (And if you can see it... see "Visual," above.)






        share|improve this answer











        $endgroup$



        What kind of ICBM/missile tracking tech did they have in the 80s?



        Sonic boom Missiles really haul the mail, and the sonic boom is fairly distinctive. With listening posts throughout the world/nation, it's possible to track the movement of the missile. With fast enough computers (a bit of a problem in the 80s), this could be used to extrapolate an actual position (sonic booms happen after the fact).



        Heat Missiles are notorious polluters with all that rocket thrust to keep them going. Consequently, there's a boatload of heat. To be honest, there's heat all over. A house fire can produce more therms than the exhaust of a rocket, so we're back to computers doing things like analyzing the path and speed of the heat source. Fast + ballistic = bad. Stationary and sea-level = call the fire department.



        Radar Missiles are small, but not that small. Radar can pick them so long as the radar system's refresh time is fast enough to capture their passing. Some radar installations in the 80s could do it, but most couldn't. Do you remember that lovely line that sweeps around 360° on the old WWII radar screens? That's the position of the rotating antenna that's emitting/detecting the radar signal. We don't draw the line anymore, but it's still there, and if it can't get around fast enough, it can't see the missile. (Note that phased array radar do this electronically along a narrow arc, which makes them fast. They're great for seeing what's in front of a plane, they're less useful for watching a horizon, but it's better than what it was.)



        Visual In the end, machines make mistakes. Nothings more useful than a pair of eyes and a set of binoculars. Pro: more trustworthy identification. Con: You don't have long before... oh, cra... BOOM!



        Radiation Finally, though unlikely to have been used regularly (or at all) during the 80s, the tech did exist to track radiation sources. Usually that's not an issue until after the missile has hit, but you could believably use it in a story (hey, if The Blacklist can suggest six Soviet briefcase nukes hidden in the U.S. in the 60s, then we Americans will suck down just about anything).



        Could any or all of these be used to track a spaceship? Sure! The biggest problem would be the confusion over the fact that it's the wrong kind of ballistic path. It's a "fall from orbit" ballistic path rather than a "launched from my enemy's backyard" path. That'd confuse NORAD for a bit, but it's quite believable that they'd see it.



        Yeah, but what about today?



        I doubt any of this could be done in the 80s. I'd be mildly surprised of some of it could actually be done today. But for the sake of being thorough.



        Light reflection Objects in the sky reflect/occlude light. It's one of the ways we detect new stars and planets — by looking for light that should be there, but isn't, or that shouldn't be there, but is.



        EM emissions Anything that uses electronics emits EM noise. To a degree this can be blocked, but sometimes it can't. Add to this that thermal differentials, metallic stress, communications to/from/with the missile... all of this could be detected and triangulated.



        Humidity AKA contrails, the condensation of water behind the high-heat/high-pressure-sudden-cold/low-pressure exhaust of a jet/rocket engine. Whether they're visible or not, the change in humidity is there, and when light passes through it, that light changes. (And if you can see it... see "Visual," above.)







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 3 hours ago

























        answered 3 hours ago









        JBHJBH

        47.3k699222




        47.3k699222





















            2












            $begingroup$

            There have been several "close calls" in Soviet and US history regarding false detection of missile launches or strikes. The so-called "Great Storm" in 1967 is one example, sunlight reflecting off clouds in 1983 is another.



            Detecting missile launches in late 1980s / early 1990s is extremely different than today - especially on the soviet side of the fence (the US was more forward-moving with computerized technology in the 80s/90s than the soviets, but the details of that are FAR too tedious to explain in answer to this question). The "old" (meaning pre-computerized) systems relied on radio transmissions, random bursts of light (ie explosions that resembled the bursts similar to that of rockets taking off), and so on. More advanced computerized systems came with more precise detection systems (and therefore less error rates), but these only came to the US in the early 1980s (with President Reagan's so-called "star wars" advancements), and to Russia in the mid 1990s.



            So before the computerized advancements, the "crash" of a spaceship - if it caused a small or medium-sized explosion near a known US missile site - would almost certainly have triggered concern from the Russians as a nuclear launch.



            Another option is an alien craft that, by nature of operation, would interfere with radio operations on either (or both) sides of the fence, much like the 1967 event. This is not far-fetched; a complex space-craft might send radio waves cross-galaxy in a way that requires such large amounts of energy it blasts through the noise floor of radio frequencies.



            Yet another option is where the spaceship hits - if it hits a known target (like the White House, Congress, Supreme Court - or on the USSR side of the fence the Kremlin, Baku, etc) - might be wrongly perceived as an attack.






            share|improve this answer











            $endgroup$








            • 2




              $begingroup$
              That's "Star Wars" you dang hippie! 😝
              $endgroup$
              – JBH
              4 hours ago
















            2












            $begingroup$

            There have been several "close calls" in Soviet and US history regarding false detection of missile launches or strikes. The so-called "Great Storm" in 1967 is one example, sunlight reflecting off clouds in 1983 is another.



            Detecting missile launches in late 1980s / early 1990s is extremely different than today - especially on the soviet side of the fence (the US was more forward-moving with computerized technology in the 80s/90s than the soviets, but the details of that are FAR too tedious to explain in answer to this question). The "old" (meaning pre-computerized) systems relied on radio transmissions, random bursts of light (ie explosions that resembled the bursts similar to that of rockets taking off), and so on. More advanced computerized systems came with more precise detection systems (and therefore less error rates), but these only came to the US in the early 1980s (with President Reagan's so-called "star wars" advancements), and to Russia in the mid 1990s.



            So before the computerized advancements, the "crash" of a spaceship - if it caused a small or medium-sized explosion near a known US missile site - would almost certainly have triggered concern from the Russians as a nuclear launch.



            Another option is an alien craft that, by nature of operation, would interfere with radio operations on either (or both) sides of the fence, much like the 1967 event. This is not far-fetched; a complex space-craft might send radio waves cross-galaxy in a way that requires such large amounts of energy it blasts through the noise floor of radio frequencies.



            Yet another option is where the spaceship hits - if it hits a known target (like the White House, Congress, Supreme Court - or on the USSR side of the fence the Kremlin, Baku, etc) - might be wrongly perceived as an attack.






            share|improve this answer











            $endgroup$








            • 2




              $begingroup$
              That's "Star Wars" you dang hippie! 😝
              $endgroup$
              – JBH
              4 hours ago














            2












            2








            2





            $begingroup$

            There have been several "close calls" in Soviet and US history regarding false detection of missile launches or strikes. The so-called "Great Storm" in 1967 is one example, sunlight reflecting off clouds in 1983 is another.



            Detecting missile launches in late 1980s / early 1990s is extremely different than today - especially on the soviet side of the fence (the US was more forward-moving with computerized technology in the 80s/90s than the soviets, but the details of that are FAR too tedious to explain in answer to this question). The "old" (meaning pre-computerized) systems relied on radio transmissions, random bursts of light (ie explosions that resembled the bursts similar to that of rockets taking off), and so on. More advanced computerized systems came with more precise detection systems (and therefore less error rates), but these only came to the US in the early 1980s (with President Reagan's so-called "star wars" advancements), and to Russia in the mid 1990s.



            So before the computerized advancements, the "crash" of a spaceship - if it caused a small or medium-sized explosion near a known US missile site - would almost certainly have triggered concern from the Russians as a nuclear launch.



            Another option is an alien craft that, by nature of operation, would interfere with radio operations on either (or both) sides of the fence, much like the 1967 event. This is not far-fetched; a complex space-craft might send radio waves cross-galaxy in a way that requires such large amounts of energy it blasts through the noise floor of radio frequencies.



            Yet another option is where the spaceship hits - if it hits a known target (like the White House, Congress, Supreme Court - or on the USSR side of the fence the Kremlin, Baku, etc) - might be wrongly perceived as an attack.






            share|improve this answer











            $endgroup$



            There have been several "close calls" in Soviet and US history regarding false detection of missile launches or strikes. The so-called "Great Storm" in 1967 is one example, sunlight reflecting off clouds in 1983 is another.



            Detecting missile launches in late 1980s / early 1990s is extremely different than today - especially on the soviet side of the fence (the US was more forward-moving with computerized technology in the 80s/90s than the soviets, but the details of that are FAR too tedious to explain in answer to this question). The "old" (meaning pre-computerized) systems relied on radio transmissions, random bursts of light (ie explosions that resembled the bursts similar to that of rockets taking off), and so on. More advanced computerized systems came with more precise detection systems (and therefore less error rates), but these only came to the US in the early 1980s (with President Reagan's so-called "star wars" advancements), and to Russia in the mid 1990s.



            So before the computerized advancements, the "crash" of a spaceship - if it caused a small or medium-sized explosion near a known US missile site - would almost certainly have triggered concern from the Russians as a nuclear launch.



            Another option is an alien craft that, by nature of operation, would interfere with radio operations on either (or both) sides of the fence, much like the 1967 event. This is not far-fetched; a complex space-craft might send radio waves cross-galaxy in a way that requires such large amounts of energy it blasts through the noise floor of radio frequencies.



            Yet another option is where the spaceship hits - if it hits a known target (like the White House, Congress, Supreme Court - or on the USSR side of the fence the Kremlin, Baku, etc) - might be wrongly perceived as an attack.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 2 hours ago

























            answered 5 hours ago









            cegfaultcegfault

            1,317512




            1,317512







            • 2




              $begingroup$
              That's "Star Wars" you dang hippie! 😝
              $endgroup$
              – JBH
              4 hours ago













            • 2




              $begingroup$
              That's "Star Wars" you dang hippie! 😝
              $endgroup$
              – JBH
              4 hours ago








            2




            2




            $begingroup$
            That's "Star Wars" you dang hippie! 😝
            $endgroup$
            – JBH
            4 hours ago





            $begingroup$
            That's "Star Wars" you dang hippie! 😝
            $endgroup$
            – JBH
            4 hours ago











            Ziggy STARDIS is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Ziggy STARDIS is a new contributor. Be nice, and check out our Code of Conduct.












            Ziggy STARDIS is a new contributor. Be nice, and check out our Code of Conduct.











            Ziggy STARDIS is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Worldbuilding Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f142862%2fmissile-strike-detection-but-its-not-actually-a-missile%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Isabella Eugénie Boyer Biographie | Références | Menu de navigationmodifiermodifier le codeComparator to Compute the Relative Value of a U.S. Dollar Amount – 1774 to Present.

            Mpande kaSenzangakhona Biographie | Références | Menu de navigationmodifierMpande kaSenzangakhonavoir la liste des auteursm

            Hornos de Moncalvillo Voir aussi | Menu de navigationmodifierm