Keeping a ball lost foreverFour stones on a Go-boardBlock the snake from reaching pointsNumber swapping gameLeast amount of moves is requiredHnefatafl - a lost ArtJonMark Perry's Grid Logic PuzzleGuide the dots to land on the portals at the same timeGuide dots to land on any pair of matching portals at the same time20 cards facing downThe No-Straight Maze

What happens if you are holding an Iron Flask with a demon inside and walk into an Antimagic Field?

What are the advantages of simplicial model categories over non-simplicial ones?

Why does a simple loop result in ASYNC_NETWORK_IO waits?

How to explain what's wrong with this application of the chain rule?

Calculating total slots

Using substitution ciphers to generate new alphabets in a novel

System.QueryException unexpected token

What is the evidence for the "tyranny of the majority problem" in a direct democracy context?

How can I cure my players of their suspicion that every object is a mimic?

creating a ":KeepCursor" command

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

Can I say "fingers" when referring to toes?

What should you do when eye contact makes your subordinate uncomfortable?

What is going on with 'gets(stdin)' on the site coderbyte?

How do I delete all blank lines in a buffer?

Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?

Is this toilet slogan correct usage of the English language?

On a tidally locked planet, would time be quantized?

Biological Blimps: Propulsion

Limits and Infinite Integration by Parts

Mixing PEX brands

Unexpected behavior of the procedure `Area` on the object 'Polygon'

What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?

Did arcade monitors have same pixel aspect ratio as TV sets?



Keeping a ball lost forever


Four stones on a Go-boardBlock the snake from reaching pointsNumber swapping gameLeast amount of moves is requiredHnefatafl - a lost ArtJonMark Perry's Grid Logic PuzzleGuide the dots to land on the portals at the same timeGuide dots to land on any pair of matching portals at the same time20 cards facing downThe No-Straight Maze













2












$begingroup$


Suppose you can make a rectangular maze, where each cell (apart from the bottom-right) can contain an arrow in one of the four directions (up, down, left or right) of your choosing, except for those on an edge or corner, which must not point out of the maze.



A ball is then placed into the top-left square and begins to move. It will move in the direction of the arrow in the cell that it is currently in. Then, that arrow will rotate 90 degrees clockwise. If an arrow is pointing out of the maze, it will continue rotating clockwise until it points in a valid direction.



A valid maze is one in which the ball will never reach the bottom-right corner.




Prove or disprove the existence of such a maze. If it exists, find the smallest possible maze (in terms of number of squares).





Here is an example of a maze.



An example of a 2x2 maze. Top-left (A1) has arrow pointing right, top-right (A2) is pointing left, lower-left (B1) is pointing up.



  • The ball begins in A1. It moves right to A2, and the A1 arrow rotates to point down.

  • The ball moves left to A1, and the A2 arrow rotates to point down (as both up and right point out of the maze).

  • The ball moves down to B1, and the A1 arrow rotates to point right (as both left and up point out of the maze).

  • The ball moves up to A1, and the B1 arrow rotates to point right.

  • The ball moves right to A2, and the A1 arrow rotates to point down.

  • The ball moves down to B2, and the A2 arrow rotates to point left.

  • Now, the ball is in B2, the bottom-right corner of the maze, so that is the end. It is not a valid maze, but if it were, it would have a score of $4$.









share|improve this question









$endgroup$
















    2












    $begingroup$


    Suppose you can make a rectangular maze, where each cell (apart from the bottom-right) can contain an arrow in one of the four directions (up, down, left or right) of your choosing, except for those on an edge or corner, which must not point out of the maze.



    A ball is then placed into the top-left square and begins to move. It will move in the direction of the arrow in the cell that it is currently in. Then, that arrow will rotate 90 degrees clockwise. If an arrow is pointing out of the maze, it will continue rotating clockwise until it points in a valid direction.



    A valid maze is one in which the ball will never reach the bottom-right corner.




    Prove or disprove the existence of such a maze. If it exists, find the smallest possible maze (in terms of number of squares).





    Here is an example of a maze.



    An example of a 2x2 maze. Top-left (A1) has arrow pointing right, top-right (A2) is pointing left, lower-left (B1) is pointing up.



    • The ball begins in A1. It moves right to A2, and the A1 arrow rotates to point down.

    • The ball moves left to A1, and the A2 arrow rotates to point down (as both up and right point out of the maze).

    • The ball moves down to B1, and the A1 arrow rotates to point right (as both left and up point out of the maze).

    • The ball moves up to A1, and the B1 arrow rotates to point right.

    • The ball moves right to A2, and the A1 arrow rotates to point down.

    • The ball moves down to B2, and the A2 arrow rotates to point left.

    • Now, the ball is in B2, the bottom-right corner of the maze, so that is the end. It is not a valid maze, but if it were, it would have a score of $4$.









    share|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Suppose you can make a rectangular maze, where each cell (apart from the bottom-right) can contain an arrow in one of the four directions (up, down, left or right) of your choosing, except for those on an edge or corner, which must not point out of the maze.



      A ball is then placed into the top-left square and begins to move. It will move in the direction of the arrow in the cell that it is currently in. Then, that arrow will rotate 90 degrees clockwise. If an arrow is pointing out of the maze, it will continue rotating clockwise until it points in a valid direction.



      A valid maze is one in which the ball will never reach the bottom-right corner.




      Prove or disprove the existence of such a maze. If it exists, find the smallest possible maze (in terms of number of squares).





      Here is an example of a maze.



      An example of a 2x2 maze. Top-left (A1) has arrow pointing right, top-right (A2) is pointing left, lower-left (B1) is pointing up.



      • The ball begins in A1. It moves right to A2, and the A1 arrow rotates to point down.

      • The ball moves left to A1, and the A2 arrow rotates to point down (as both up and right point out of the maze).

      • The ball moves down to B1, and the A1 arrow rotates to point right (as both left and up point out of the maze).

      • The ball moves up to A1, and the B1 arrow rotates to point right.

      • The ball moves right to A2, and the A1 arrow rotates to point down.

      • The ball moves down to B2, and the A2 arrow rotates to point left.

      • Now, the ball is in B2, the bottom-right corner of the maze, so that is the end. It is not a valid maze, but if it were, it would have a score of $4$.









      share|improve this question









      $endgroup$




      Suppose you can make a rectangular maze, where each cell (apart from the bottom-right) can contain an arrow in one of the four directions (up, down, left or right) of your choosing, except for those on an edge or corner, which must not point out of the maze.



      A ball is then placed into the top-left square and begins to move. It will move in the direction of the arrow in the cell that it is currently in. Then, that arrow will rotate 90 degrees clockwise. If an arrow is pointing out of the maze, it will continue rotating clockwise until it points in a valid direction.



      A valid maze is one in which the ball will never reach the bottom-right corner.




      Prove or disprove the existence of such a maze. If it exists, find the smallest possible maze (in terms of number of squares).





      Here is an example of a maze.



      An example of a 2x2 maze. Top-left (A1) has arrow pointing right, top-right (A2) is pointing left, lower-left (B1) is pointing up.



      • The ball begins in A1. It moves right to A2, and the A1 arrow rotates to point down.

      • The ball moves left to A1, and the A2 arrow rotates to point down (as both up and right point out of the maze).

      • The ball moves down to B1, and the A1 arrow rotates to point right (as both left and up point out of the maze).

      • The ball moves up to A1, and the B1 arrow rotates to point right.

      • The ball moves right to A2, and the A1 arrow rotates to point down.

      • The ball moves down to B2, and the A2 arrow rotates to point left.

      • Now, the ball is in B2, the bottom-right corner of the maze, so that is the end. It is not a valid maze, but if it were, it would have a score of $4$.






      logical-deduction strategy optimization






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 3 hours ago









      ZanyGZanyG

      1,086420




      1,086420




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$


          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.







          share|improve this answer









          $endgroup$












          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            2 hours ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "559"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80948%2fkeeping-a-ball-lost-forever%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$


          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.







          share|improve this answer









          $endgroup$












          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            2 hours ago















          5












          $begingroup$


          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.







          share|improve this answer









          $endgroup$












          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            2 hours ago













          5












          5








          5





          $begingroup$


          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.







          share|improve this answer









          $endgroup$




          Suppose such a maze exists. Then the balls visits at least one square infinitely many times. Let $S$ be one such square that is closest to the bottom-right. $S$ is not the bottom-right square, so there exists a square $T$ to the right of or below $S$ that is closer to the bottom-right than $S$ is. However, the ball must visit $T$ at least once every $4$ visits to $S$ due to arrow rotation. Therefore, the ball must also visit $T$ infinitely many times, contradicting the minimality of $S$. Then no such maze exists.








          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 2 hours ago









          noednenoedne

          7,16712057




          7,16712057











          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            2 hours ago
















          • $begingroup$
            Very succinct; well done. I'll wait a bit before accepting.
            $endgroup$
            – ZanyG
            2 hours ago















          $begingroup$
          Very succinct; well done. I'll wait a bit before accepting.
          $endgroup$
          – ZanyG
          2 hours ago




          $begingroup$
          Very succinct; well done. I'll wait a bit before accepting.
          $endgroup$
          – ZanyG
          2 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Puzzling Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80948%2fkeeping-a-ball-lost-forever%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Isabella Eugénie Boyer Biographie | Références | Menu de navigationmodifiermodifier le codeComparator to Compute the Relative Value of a U.S. Dollar Amount – 1774 to Present.

          Lioubotyn Sommaire Géographie | Histoire | Population | Notes et références | Liens externes | Menu de navigationlubotin.kharkov.uamodifier« Recensements et estimations de la population depuis 1897 »« Office des statistiques d'Ukraine : population au 1er janvier 2010, 2011 et 2012 »« Office des statistiques d'Ukraine : population au 1er janvier 2011, 2012 et 2013 »Informations officiellesCartes topographiquesCarte routièrem

          Mpande kaSenzangakhona Biographie | Références | Menu de navigationmodifierMpande kaSenzangakhonavoir la liste des auteursm